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Computation and Visualization of Cuspidal Waveforms 
for Modular Group Using GridMathematica

(Pengiraan dan Visualisasi Gelombang Berjuring untuk Kumpulan Modul 
dengan Menggunakan GridMathematica)

Chan Kar Tim*, Hishamuddin Zainuddin & Saeid Molladavoudi

Abstract

Spectral studies on the eigenfunctions of Laplace-Beltrami operator on a cusp manifold are known to contain both discrete 
and continuous eigenvalues. The discrete eigenfunctions are usually called Maass cusp forms where their eigenvalues 
are not known analytically. The aims of this report were to compute the eigenvalues λ = r2 + 1/4 for the modular 
group, PSL(2,Z) numerically and visualize the waveforms using GridMathematica. At the same time, we compared the 
performance of parallel programming (GridMathematica) and normal programming (Mathematica). This serves to show 
the feasibility and advantages of using the parallel version of commercially available software for complex computations 
of Maass cusp forms. In our computer search for 33 eigenvalues in the r-interval [9, 30.4], we found that the performance 
of the parallel programme is about six times faster than the normal programme. 
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Abstrak

Kajian spektrum pada fungsi eigen operator Laplace-Beltrami di atas permukaan berjuring diketahui mempunyai nilai 
eigen yang diskrit dan selanjar. Fungsi eigen diskrit biasanya dikenali sebagai fungsi bentuk juring Maass dengan nilai 
eigennya tidak diketahui secara analisis. Tujuan kertas ini adalah untuk mengira nilai eigen λ = r2 + 1/4 bagi kumpulan 
modul, PSL(2,Z) secara berangka dan menggambarkan gelombangnya dengan menggunakan GridMathematica. Pada 
masa yang sama, kami juga membandingkan prestasi pengaturcaraan selari (GridMatematica) dengan pengaturcaraan 
biasa (Mathematica). Ini bertujuan untuk menunjukkan kebolehlaksanaan dan kelebihan menggunakan perisian komersial 
versi selari untuk pengiraan kompleks fungsi bentuk juring Maass. Dalam carian komputer untuk 33 nilai eigen dalam 
selang-r [9, 30.4], didapati bahawa prestasi pengaturcaraan selari adalah lebih kurang enam kali ganda lebih laju 
daripada pengaturcaraan biasa. 

Kata kunci: Fungsi bentuk juring Maass; GridMathematica; kumpulan modul

Introduction

Computation of eigenfunctions of Laplace-Beltrami 
operators on cusp manifold has been studied in both 
physics and mathematics due to their spectra that being 
both discrete and continuous. Well-studied cusp manifolds 
are the hyperbolic surfaces H / Г formed from the quotient 
of the upper half plane H  equipped with the hyperbolic 
metric ds2 = y-2(dx2 + dy2) by a discrete group of PSL(2, 
R). One of the reasons that such systems are of interest is 
that classically they represent chaotic systems (Gutzwiller 
1990) whose quantum properties are yet to be properly 
understood. 
	 Our report was based on the well known modular 
surface PSL(2, Z) \ H. Particularly we focused on the 
Maass cusp forms (MCF) on this surface which are 
eigenfunctions (the quantum bound states) of the discrete 
spectra. Computational work of MCF on PSL(2, Z) \ H is 
not new and has been done by researchers such as Hejhal 
and Rackner (1992), Stromberg (2005) and Then (2005). 
Their earlier numerical programmes are based on Cray-

FORTRAN (Hejhal & Rackner 1992), FORTRAN (Stromberg 
2005) and C programming (Then 2005). These numerical 
programmes while efficient are often complex and hard to 
understand for beginners.
	 Following this, Siddig and Zainuddin (2009) used a 
commercial software Mathematica for the computation 
of Maass waveforms. Mathematica has a wider user base 
and are easily accessible to beginners. They implemented 
Hejhal and Then’s algorithm in Mathematica and developed 
two modules for finding even and odd eigenvalues 
separately. An advantage of using Mathematica is that 
there are many built-in functions including the K-Bessel 
function, BesselK[order, argument]. This is one of the main 
components and among the most time consuming part in 
computing eigenvalues. They also made a comparison 
between the built in K-Bessel function and the K-Bessel 
developed by Then (2005). They found out that both gave 
the same results to justify Mathematica usage for its ease. 
The only drawbacks of the built-in function are it is more 
time consuming and has limited range. At present, to the 
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best of our knowledge, there are only one Mathematica 
package that handles specifically the MCF computations 
and particularly there is none using GridMathematica. 
GridMathematica is a parallel version of Mathematica 
which is realizable on a cluster of workstations. This 
is particularly handy if one is interested in computing 
higher ranges of eigenvalues for the modular surface or 
eigenfunctions for more complex surfaces. It is in this 
view that this work is done; namely to facilitate future 
calculations by testing the programme on a standard 
example.

Materials and Methods

The Algorithm for Computation

An algorithm for computing MCF is built based on Hejhal’s 
algorithm (Hejhal & Rackner 1992) and that of Then 
(2005). For completeness, we reproduce here the outlines 
of the algorithm. The algorithm is based on Fourier 
expansions and the use of implicit automorphy under the 
action of the modular group. The Fourier expansion of the 
MCF for the symmetrical fundamental domain is written 
as (Then 2005):

	 ψ(x + iy) = Kir(2πny)cs(2πnx),	  (1)

where cs(x) represents 2cos(x) for even Maass waveforms 
and 2sin(x) for odd ones, an is the Fourier coefficient and 
Kir(x) is the modified Bessel function of the second kind 
whose order is connected with the eigenvalue λ by λ = r2 
+ 1/4. It is to be noted here that λ is the true eigenvalue 
but then hereafter we will call r to be eigenvalue instead 
as commonly used in the literature (Then 2005). We then 
truncate the Fourier expansion to get:

	 ψ(x + iy) = Kir(2πny)cs(2πnx) + [[ε]],	 (2)

where M0 = M(y0) is the adopted truncation of number of 
terms.
	I mplementing the automorphy of ψ(z) under the 
group G = PSL(2, Z), we write ψ(z) = ψ(z*). Point z* is the 
pullback of the point z into the fundamental domain of the 
modular surface. Applying this condition on (2), we will 
have: 

	 ψ(x + iy) = ψ(x* + iy*) 
	
		  = Kir(2πny*)cs(2πnx*)+[[ε]].	 (3)
	

	 Next, we solve (3) by using finite Fourier transform 
to give:

	 am Kir(2πmy)	 =	 Kir(2πny*)

	
			   cs(2πnxj

*)cs(–2πmxj)+2[[ε]],
		

(4)

where Q is the selected number of equidistributed sampling 
points. Neglecting the error 2[[ε]] and taking 1 ≤ m ≤ M0, 
we have the system of equations:

	 (r, y)an = 0,    m≥1,	 (5)

where the matrix Vmn is given by:

	 Vmn(r, y) = Kir(2πny)δmn

	 Kir(2πny*)cs(2πnxj
*)cs(–2πmxj).	 (6)

	 We may introduce normalization in order to avoid the 
trivial solution by setting a1=1 (Miyake 1989) to give: 

	 (r, y)an = –Vm(r, y), for 2 ≤ m ≤ M0.	 (7)

	 By solving (7), we will get the Fourier coefficients. 
Details of the algorithm can be found in Booker et al 
(2006), Hejhal and Rackner (1992), Siddig and Zainuddin 
(2009) and Then (2005).
	 Note that the coefficients in (7) should be independent 
of y. To avoid repeated solving of (7) for such check, 
we employ a method described by Then (2005), that 
computes:

	 gm = (r, y#2)an
#1   for 1 ≤ m ≤ M0,	 (8)

where y#2 = 0.9y#1. We then look for simultaneous changes 
of sign in gm to determine the candidate interval for the 
eigenvalues. 

GridMathematica Implementation

The computational work in this report is based on 
the programmes developed by Siddig and Zainuddin 
(2009) whose intent was to demonstrate that available 
commercial software Mathematica is capable to do the 
MCF computations. We further demonstrate here that use 
of GridMathematica or its parallel version can help make 
the computations less time-consuming. In this work, the 
GridMathematica is installed on a cluster of workstations 
which consist of 7 nodes (Dual processors of 1.7 GHz 
and 1 GB of memory) linked together by Rocks Cluster 
(version 5.2, Linux distribution). The earlier Mathematica 
programmes (Siddig & Zainuddin 2009) are optimised and 
modified so that they are workable in parallel computing 
environment.
	 In optimization, we modify the bisection routine which 
is used to find the root of a candidate interval to a certain 
point of accuracy. We limit our programme to run the gm 
module, g[r,m], only once for a single interval. We use 
only gm value for m=1 as this will give us a more accurate 
eigenvalue when compared with the other gm values. Table 
1 shows the performance of the maassodd module before 
and after optimization process. This way of optimization 
saved at least 79% of computing time. Next, we also 
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minimize the use of the gm plot to find the candidate interval 
of eigenvalues. We found out that some fake intervals will 
eventually disappear when we rerun the candidate interval 
in a smaller step size. 
	 For the programme to work in parallel computing 
environment (using star network topology), we need to 
distribute all functions in the programme to all available 
nodes on the cluster workstation using command Distri
buteDefinitions[definition]. Then, we use the automatic 
parallelization command Parallelize[expression] to send 
all tasks to different nodes for evaluation. This command 
will automatically divide the number of tasks between 
each kernel before the evaluation starts. Let’s take interval 
[9, 30.4] for example. Within our programme, we have 
Fourier coefficient module, f[r], pullback module, pulz[z], 
gm module, g[r,m], precision module, prec[r] and maassodd 
module, maassodd[ri, rf ,dr]. Initially, we distribute them 
to other kernels using command written in this form:

DistributeDefinitions[f, pulz, g, prec, maassodd]

	 Next, to parallelize a list of task, the command is 
written in this form:

Parallelize[{maassodd [9,20, 0.1], 
maassodd[19.9, 25, 0.1], 
maassodd[24.9,30.4,0.1]}]

	 The number of tasks and the way of setting the 
interval are all dependent on the user. There are several 
other parallel computing commands besides Parallelize. 
Since our programme is written in the form of modules, 
parallelizing using command Parallelize is considered the 
best way.
	 After computing the eigenvalues, we check the 
corresponding Fourier coefficients to verify the authenticity 
of the eigenvalues. All Fourier coefficients must satisfy the 
Ramanujan-Petersson conjecture (Then 2005), i.e. | ap | 
≤ 2 for all primes p. As for the visualization, we simply 
exploit the contour plot and density plot functions of 
GridMathematica. 

Results and Discussion

We have developed two modified and optimised modules 
for finding even and odd eigenvalues in GridMathematica. 

For a better successive rate of finding all the correct 
eigenvalues, we have to set the parameters M0, Q and y 
sharply. One can run with different parameters to find the 
best results. We set M0 according to Hejhal’s observation 
(Hejhal & Rackner 1992):

	 M0 = 	 (9)

for some constant A. In practice, it turns out that A=8 is 
good enough (Siddig & Zainuddin 2009). For y, it must 
be y ≤ y0 =  thus we set it as y = 0.5 and Q = M0 +1. 
We run our modules for interval [9, 30.4] with different 
step sizes (0.1, 0.0336, 0.002 and 0.0003). These step 
sizes are chosen because the eigenvalues are distributed 
exponentially. This process eventually will provide a list of 
candidate intervals. The accuracy can be increased further 
by using the bisection module.
	 We have found 33 eigenvalues (Table 2) for interval 
[9, 30.4] and these results are very close to the Weyl’s law 
prediction (Risager 2004). For PSL(2, Z) \ H, area ⏐F⏐ 
= π/3 , Weyl’s law gives N(λ) = N(0.25+30.42) = 34.6. 
Besides, all Fourier coefficients of these eigenvalues also 
satisfy the Ramanujan-Petersson conjecture.
	 The computing times to locate the eigenvalues for both 
modules for interval [9, 30.4] are shown in Table 3. These 
results show that the performance of GridMathematica is 
at least 6 times faster than Mathematica. Figure 1 shows 
the parallel processes operating at 13 out of 14 kernels. 
The more kernels we use, the more computing time can be 
saved because more tasks can be evaluated simultaneously. 
One kernel is reserved mainly for the use of data gathering 
and some local Linux and GridMathematica processes.
	 Visualization of the MCF is shown in Figure 2. Figures 
2(a) and 2(c) show the contour plot for r =29.546388124 
and r=28.863394353, respectively. When the MCF is even, 
there are no nodal lines crossing the boundary of the 
fundamental domain. Nodal lines crossing each other only 
happen when the MCF is odd. Nodal lines are actually the 
points where ψ = 0. The result of the nodal lines agrees 
well with the results obtained by Hejhal and Rackner 
(1992). Figure 2(b) and 2(d) show the density plots for 
r =29.546388124 and r =28.863394353, respectively. 
These plots show us the probability function associated 
to ψ (i.e. |ψ|2). The brighter regions show where higher 
probability distribution of the quantum particle can be 

Table 1. Performance of maassodd module before and after optimization

Tasks

Maassodd module Time saved
Computing time 

before optimization, 
s

Computing time after 
optimization, 

s

Second, 
s

Percentage, 
%

[9.532, 9.5341, 0.0003] 321.7 65.2 256.5 79.7
[12.172, 12.1741, 0.0003] 792.3 141.1 651.2 82.2
[14.358, 14.3601, 0.0003] 1745.0 361.6 1383.4 79.3
Total computing time 2859.0 567.9 2291.1 80.1
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Table 2. r-values for the odd and even Maass cusp form for the interval [9, 30.4]

Maasseven r-values Maasseven r-values
 9.533695261 23.263711537 13.779751351
12.17300832 24.41971544 17.738563381

14.358509518 25.050854850 19.423481470

16.138073171 26.05691776 21.315795940
16.64425920 26.4469964 22.78590849

18.180917834 27.28438401 24.112352729
19.484713859 27.775920701 25.826243712
20.106694682 28.5102777 26.152085449
21.479057544 29.137587557 27.3327080
22.19467397 29.546388124 28.53074769

23.201396181 30.279048 28.863394353

Table 3. Computing time for parallel and normal processes for odd and even module

Interval 
[9,30.4]

Step Total 
time0.1 0.0336 0.002 0.0003 Bisection

Parallel 
Odd

Normal 
Odd

Parallel 
Even

Normal 
Even

7574.8 s
(2.10 h)

57898.4 s
(16.08 h)

7815.3 s
(2.17 h)

57862.1 s
(16.07 h)

4577.2 s
(1.27 h)

31119.6 s
(8.64 h)

3259.7 s
(0.91 h)

17739.0 s
(4.93 h)

30850.9 s
(8.57 h)

149335.5 s
(41.48 h)

14771.9 s
(4.10 h)

70511.5 s
(19.59 h)

28776.7 s
(7.99 h)

152450.2 s
(42.35 h)

15150.8 s
(4.21 h)

81928.8 s
(22.76 h)

12328.0 s
(3.42 h)

103601.8 s
(28,78 h)

9951.9 s
(2.76 h)

55480.0 s
(15.41 h)

84107.6 s
(23.36 h)

494405.5 s
(137.33 h)

50949.6 s
(14.15 h)

283521.4 s
(78.76 h)

Figure 1. Parallel processes
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at the given energy level (eigenvalue). Plotting times for 
both eigenvalues using GridMathematica takes around 28 
h while using Mathematica, it takes more than 3 days.

Conclusion

We have successfully computed and visualized the 
eigenvalues for modular group using GridMathematica. 
Performance of the parallel programming is about six 
times faster than the normal programming. Besides, we 
have also managed to visualize the MCF in a density plot 
giving the probability distribution of the quantum particle 
at the given energy levels. The computation for the modular 
group using GridMathematica will serve as the basis for 
further optimization and development of computation for 
cuspidal waveforms for higher energy eigenvalues as well 
as cuspidal waveforms on more complex surfaces.
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