
Sains Malaysiana 42(5)(2013): 655–660	

Computation and Visualization of Cuspidal Waveforms
for Modular Group Using GridMathematica

(Pengiraan dan Visualisasi Gelombang Berjuring untuk Kumpulan Modul
dengan Menggunakan GridMathematica)

Chan Kar Tim*, Hishamuddin Zainuddin & Saeid Molladavoudi

Abstract

Spectral studies on the eigenfunctions of Laplace-Beltrami operator on a cusp manifold are known to contain both discrete
and continuous eigenvalues. The discrete eigenfunctions are usually called Maass cusp forms where their eigenvalues
are not known analytically. The aims of this report were to compute the eigenvalues λ = r2 + 1/4 for the modular
group, PSL(2,Z) numerically and visualize the waveforms using GridMathematica. At the same time, we compared the
performance of parallel programming (GridMathematica) and normal programming (Mathematica). This serves to show
the feasibility and advantages of using the parallel version of commercially available software for complex computations
of Maass cusp forms. In our computer search for 33 eigenvalues in the r-interval [9, 30.4], we found that the performance
of the parallel programme is about six times faster than the normal programme.

Keywords: GridMathematica; Maass cusp forms; modular group

Abstrak

Kajian spektrum pada fungsi eigen operator Laplace-Beltrami di atas permukaan berjuring diketahui mempunyai nilai
eigen yang diskrit dan selanjar. Fungsi eigen diskrit biasanya dikenali sebagai fungsi bentuk juring Maass dengan nilai
eigennya tidak diketahui secara analisis. Tujuan kertas ini adalah untuk mengira nilai eigen λ = r2 + 1/4 bagi kumpulan
modul, PSL(2,Z) secara berangka dan menggambarkan gelombangnya dengan menggunakan GridMathematica. Pada
masa yang sama, kami juga membandingkan prestasi pengaturcaraan selari (GridMatematica) dengan pengaturcaraan
biasa (Mathematica). Ini bertujuan untuk menunjukkan kebolehlaksanaan dan kelebihan menggunakan perisian komersial
versi selari untuk pengiraan kompleks fungsi bentuk juring Maass. Dalam carian komputer untuk 33 nilai eigen dalam
selang-r [9, 30.4], didapati bahawa prestasi pengaturcaraan selari adalah lebih kurang enam kali ganda lebih laju
daripada pengaturcaraan biasa.

Kata kunci: Fungsi bentuk juring Maass; GridMathematica; kumpulan modul

Introduction

Computation of eigenfunctions of Laplace-Beltrami
operators on cusp manifold has been studied in both
physics and mathematics due to their spectra that being
both discrete and continuous. Well-studied cusp manifolds
are the hyperbolic surfaces H / Г formed from the quotient
of the upper half plane H equipped with the hyperbolic
metric ds2 = y-2(dx2 + dy2) by a discrete group of PSL(2,
R). One of the reasons that such systems are of interest is
that classically they represent chaotic systems (Gutzwiller
1990) whose quantum properties are yet to be properly
understood.
	 Our report was based on the well known modular
surface PSL(2, Z) \ H. Particularly we focused on the
Maass cusp forms (MCF) on this surface which are
eigenfunctions (the quantum bound states) of the discrete
spectra. Computational work of MCF on PSL(2, Z) \ H is
not new and has been done by researchers such as Hejhal
and Rackner (1992), Stromberg (2005) and Then (2005).
Their earlier numerical programmes are based on Cray-

FORTRAN (Hejhal & Rackner 1992), FORTRAN (Stromberg
2005) and C programming (Then 2005). These numerical
programmes while efficient are often complex and hard to
understand for beginners.
	 Following this, Siddig and Zainuddin (2009) used a
commercial software Mathematica for the computation
of Maass waveforms. Mathematica has a wider user base
and are easily accessible to beginners. They implemented
Hejhal and Then’s algorithm in Mathematica and developed
two modules for finding even and odd eigenvalues
separately. An advantage of using Mathematica is that
there are many built-in functions including the K-Bessel
function, BesselK[order, argument]. This is one of the main
components and among the most time consuming part in
computing eigenvalues. They also made a comparison
between the built in K-Bessel function and the K-Bessel
developed by Then (2005). They found out that both gave
the same results to justify Mathematica usage for its ease.
The only drawbacks of the built-in function are it is more
time consuming and has limited range. At present, to the

656	

best of our knowledge, there are only one Mathematica
package that handles specifically the MCF computations
and particularly there is none using GridMathematica.
GridMathematica is a parallel version of Mathematica
which is realizable on a cluster of workstations. This
is particularly handy if one is interested in computing
higher ranges of eigenvalues for the modular surface or
eigenfunctions for more complex surfaces. It is in this
view that this work is done; namely to facilitate future
calculations by testing the programme on a standard
example.

Materials and Methods

The Algorithm for Computation

An algorithm for computing MCF is built based on Hejhal’s
algorithm (Hejhal & Rackner 1992) and that of Then
(2005). For completeness, we reproduce here the outlines
of the algorithm. The algorithm is based on Fourier
expansions and the use of implicit automorphy under the
action of the modular group. The Fourier expansion of the
MCF for the symmetrical fundamental domain is written
as (Then 2005):

	 ψ(x + iy) = Kir(2πny)cs(2πnx),	 (1)

where cs(x) represents 2cos(x) for even Maass waveforms
and 2sin(x) for odd ones, an is the Fourier coefficient and
Kir(x) is the modified Bessel function of the second kind
whose order is connected with the eigenvalue λ by λ = r2
+ 1/4. It is to be noted here that λ is the true eigenvalue
but then hereafter we will call r to be eigenvalue instead
as commonly used in the literature (Then 2005). We then
truncate the Fourier expansion to get:

	 ψ(x + iy) = Kir(2πny)cs(2πnx) + [[ε]],	 (2)

where M0 = M(y0) is the adopted truncation of number of
terms.
	I mplementing the automorphy of ψ(z) under the
group G = PSL(2, Z), we write ψ(z) = ψ(z*). Point z* is the
pullback of the point z into the fundamental domain of the
modular surface. Applying this condition on (2), we will
have:

	 ψ(x + iy) = ψ(x* + iy*)
	
		 = Kir(2πny*)cs(2πnx*)+[[ε]].	 (3)
	

	 Next, we solve (3) by using finite Fourier transform
to give:

	 am Kir(2πmy)	 =	 Kir(2πny*)

	
			 cs(2πnxj

*)cs(–2πmxj)+2[[ε]],
		

(4)

where Q is the selected number of equidistributed sampling
points. Neglecting the error 2[[ε]] and taking 1 ≤ m ≤ M0,
we have the system of equations:

	 (r, y)an = 0, m≥1,	 (5)

where the matrix Vmn is given by:

	 Vmn(r, y) = Kir(2πny)δmn

	 Kir(2πny*)cs(2πnxj
*)cs(–2πmxj).	 (6)

	 We may introduce normalization in order to avoid the
trivial solution by setting a1=1 (Miyake 1989) to give:

	 (r, y)an = –Vm(r, y), for 2 ≤ m ≤ M0.	 (7)

	 By solving (7), we will get the Fourier coefficients.
Details of the algorithm can be found in Booker et al
(2006), Hejhal and Rackner (1992), Siddig and Zainuddin
(2009) and Then (2005).
	 Note that the coefficients in (7) should be independent
of y. To avoid repeated solving of (7) for such check,
we employ a method described by Then (2005), that
computes:

	 gm = (r, y#2)an
#1 for 1 ≤ m ≤ M0,	 (8)

where y#2 = 0.9y#1. We then look for simultaneous changes
of sign in gm to determine the candidate interval for the
eigenvalues.

GridMathematica Implementation

The computational work in this report is based on
the programmes developed by Siddig and Zainuddin
(2009) whose intent was to demonstrate that available
commercial software Mathematica is capable to do the
MCF computations. We further demonstrate here that use
of GridMathematica or its parallel version can help make
the computations less time-consuming. In this work, the
GridMathematica is installed on a cluster of workstations
which consist of 7 nodes (Dual processors of 1.7 GHz
and 1 GB of memory) linked together by Rocks Cluster
(version 5.2, Linux distribution). The earlier Mathematica
programmes (Siddig & Zainuddin 2009) are optimised and
modified so that they are workable in parallel computing
environment.
	 In optimization, we modify the bisection routine which
is used to find the root of a candidate interval to a certain
point of accuracy. We limit our programme to run the gm
module, g[r,m], only once for a single interval. We use
only gm value for m=1 as this will give us a more accurate
eigenvalue when compared with the other gm values. Table
1 shows the performance of the maassodd module before
and after optimization process. This way of optimization
saved at least 79% of computing time. Next, we also

	 	 657

minimize the use of the gm plot to find the candidate interval
of eigenvalues. We found out that some fake intervals will
eventually disappear when we rerun the candidate interval
in a smaller step size.
	 For the programme to work in parallel computing
environment (using star network topology), we need to
distribute all functions in the programme to all available
nodes on the cluster workstation using command Distri
buteDefinitions[definition]. Then, we use the automatic
parallelization command Parallelize[expression] to send
all tasks to different nodes for evaluation. This command
will automatically divide the number of tasks between
each kernel before the evaluation starts. Let’s take interval
[9, 30.4] for example. Within our programme, we have
Fourier coefficient module, f[r], pullback module, pulz[z],
gm module, g[r,m], precision module, prec[r] and maassodd
module, maassodd[ri, rf ,dr]. Initially, we distribute them
to other kernels using command written in this form:

DistributeDefinitions[f, pulz, g, prec, maassodd]

	 Next, to parallelize a list of task, the command is
written in this form:

Parallelize[{maassodd [9,20, 0.1],
maassodd[19.9, 25, 0.1],
maassodd[24.9,30.4,0.1]}]

	 The number of tasks and the way of setting the
interval are all dependent on the user. There are several
other parallel computing commands besides Parallelize.
Since our programme is written in the form of modules,
parallelizing using command Parallelize is considered the
best way.
	 After computing the eigenvalues, we check the
corresponding Fourier coefficients to verify the authenticity
of the eigenvalues. All Fourier coefficients must satisfy the
Ramanujan-Petersson conjecture (Then 2005), i.e. | ap |
≤ 2 for all primes p. As for the visualization, we simply
exploit the contour plot and density plot functions of
GridMathematica.

Results and Discussion

We have developed two modified and optimised modules
for finding even and odd eigenvalues in GridMathematica.

For a better successive rate of finding all the correct
eigenvalues, we have to set the parameters M0, Q and y
sharply. One can run with different parameters to find the
best results. We set M0 according to Hejhal’s observation
(Hejhal & Rackner 1992):

	 M0 = 	 (9)

for some constant A. In practice, it turns out that A=8 is
good enough (Siddig & Zainuddin 2009). For y, it must
be y ≤ y0 = thus we set it as y = 0.5 and Q = M0 +1.
We run our modules for interval [9, 30.4] with different
step sizes (0.1, 0.0336, 0.002 and 0.0003). These step
sizes are chosen because the eigenvalues are distributed
exponentially. This process eventually will provide a list of
candidate intervals. The accuracy can be increased further
by using the bisection module.
	 We have found 33 eigenvalues (Table 2) for interval
[9, 30.4] and these results are very close to the Weyl’s law
prediction (Risager 2004). For PSL(2, Z) \ H, area ⏐F⏐
= π/3 , Weyl’s law gives N(λ) = N(0.25+30.42) = 34.6.
Besides, all Fourier coefficients of these eigenvalues also
satisfy the Ramanujan-Petersson conjecture.
	 The computing times to locate the eigenvalues for both
modules for interval [9, 30.4] are shown in Table 3. These
results show that the performance of GridMathematica is
at least 6 times faster than Mathematica. Figure 1 shows
the parallel processes operating at 13 out of 14 kernels.
The more kernels we use, the more computing time can be
saved because more tasks can be evaluated simultaneously.
One kernel is reserved mainly for the use of data gathering
and some local Linux and GridMathematica processes.
	 Visualization of the MCF is shown in Figure 2. Figures
2(a) and 2(c) show the contour plot for r =29.546388124
and r=28.863394353, respectively. When the MCF is even,
there are no nodal lines crossing the boundary of the
fundamental domain. Nodal lines crossing each other only
happen when the MCF is odd. Nodal lines are actually the
points where ψ = 0. The result of the nodal lines agrees
well with the results obtained by Hejhal and Rackner
(1992). Figure 2(b) and 2(d) show the density plots for
r =29.546388124 and r =28.863394353, respectively.
These plots show us the probability function associated
to ψ (i.e. |ψ|2). The brighter regions show where higher
probability distribution of the quantum particle can be

Table 1. Performance of maassodd module before and after optimization

Tasks

Maassodd module Time saved
Computing time

before optimization,
s

Computing time after
optimization,

s

Second,
s

Percentage,
%

[9.532, 9.5341, 0.0003] 321.7 65.2 256.5 79.7
[12.172, 12.1741, 0.0003] 792.3 141.1 651.2 82.2
[14.358, 14.3601, 0.0003] 1745.0 361.6 1383.4 79.3
Total computing time 2859.0 567.9 2291.1 80.1

658	

Table 2. r-values for the odd and even Maass cusp form for the interval [9, 30.4]

Maasseven r-values Maasseven r-values
 9.533695261 23.263711537 13.779751351
12.17300832 24.41971544 17.738563381

14.358509518 25.050854850 19.423481470

16.138073171 26.05691776 21.315795940
16.64425920 26.4469964 22.78590849

18.180917834 27.28438401 24.112352729
19.484713859 27.775920701 25.826243712
20.106694682 28.5102777 26.152085449
21.479057544 29.137587557 27.3327080
22.19467397 29.546388124 28.53074769

23.201396181 30.279048 28.863394353

Table 3. Computing time for parallel and normal processes for odd and even module

Interval
[9,30.4]

Step Total
time0.1 0.0336 0.002 0.0003 Bisection

Parallel
Odd

Normal
Odd

Parallel
Even

Normal
Even

7574.8 s
(2.10 h)

57898.4 s
(16.08 h)

7815.3 s
(2.17 h)

57862.1 s
(16.07 h)

4577.2 s
(1.27 h)

31119.6 s
(8.64 h)

3259.7 s
(0.91 h)

17739.0 s
(4.93 h)

30850.9 s
(8.57 h)

149335.5 s
(41.48 h)

14771.9 s
(4.10 h)

70511.5 s
(19.59 h)

28776.7 s
(7.99 h)

152450.2 s
(42.35 h)

15150.8 s
(4.21 h)

81928.8 s
(22.76 h)

12328.0 s
(3.42 h)

103601.8 s
(28,78 h)

9951.9 s
(2.76 h)

55480.0 s
(15.41 h)

84107.6 s
(23.36 h)

494405.5 s
(137.33 h)

50949.6 s
(14.15 h)

283521.4 s
(78.76 h)

Figure 1. Parallel processes

	 	 659

at the given energy level (eigenvalue). Plotting times for
both eigenvalues using GridMathematica takes around 28
h while using Mathematica, it takes more than 3 days.

Conclusion

We have successfully computed and visualized the
eigenvalues for modular group using GridMathematica.
Performance of the parallel programming is about six
times faster than the normal programming. Besides, we
have also managed to visualize the MCF in a density plot
giving the probability distribution of the quantum particle
at the given energy levels. The computation for the modular
group using GridMathematica will serve as the basis for
further optimization and development of computation for
cuspidal waveforms for higher energy eigenvalues as well
as cuspidal waveforms on more complex surfaces.

Acknowledgements

This work was supported by the Malaysian Ministry of
Higher Education, under fundamental research grant
scheme, project number 01-10-07-286FR and 01-04-10-
687FR.

References

Booker, A.R., Strombergsson, A. & Venkatesh, A. 2006.
Effective computation of Maass cusp forms. International
Mathematics Research Notices IMRN pp. 1-34. doi:
10.1155/1MRN/2006/71281.

Gutzwiller, M.C. 1990. Chaos in Classical and Quantum
Mechanics. New York: Springer-Verlag.

Hejhal, D.A. & Rackner, B.N. 1992. On the topography of Maass
waveforms for PSL(2,Z). Experimental Mathematics 1(4):
275-305.

Miyake, T. 1989. Modular Forms. Berlin: Springer-Verlag.

	 a) r=29.546388124 	 b) r=29.546388124	

	 c) r=28.863394353	 d) r=28.863394353

Figure 2. Contour plot (a and c) and density plot (b and d) for r=29.546388124 and r=28.863394353, respectively.
Figure (a) and (b) are for the odd waveforms while (c) and (d) are for the even waveforms

660	

Risager, M.S. 2004. Asymptotic densities of Maass newforms.
Journey of Number Theory 109: 96-119.

Siddig, A.A.M. & Zainuddin, H. 2009. Computation of Maass
cusp forms on modular group in Mathematica. International
Journal of Pure and Applied Mathematics 54(2): 279-295.

Stromberg, F. 2005. Computational aspects of Maass
waveforms, Ph.D. Thesis. University of Uppsala, Sweden
(unpublished).

Then, H. 2005. Maass cusp forms for large eigenvalues.
Mathematics of Computation 74(249): 368-381.

Chan Kar Tim* & Hishamuddin Zainuddin
Department of Physics
Faculty of Science
Universiti Putra Malaysia
43400 Serdang, Selangor
Malaysia

Saeid Molladavoudi & Hishamuddin Zainuddin
Laboratory of Computational Sciences and Mathematical
Physics
Institute for Mathematical Research
Universiti Putra Malaysia
43400 Serdang, Selangor
Malaysia

*Corresponding author; email: ckartim3371@gmail.com

Received: 	 9 March 2012
Accepted: 	20 October 2012

